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ABSTRACT
In a recent SIGMOD paper titled “Debunking the Myths
of Influence Maximization: An In-Depth Benchmarking
Study”, Arora et al. [1] undertake a performance bench-
marking study of several well-known algorithms for influence
maximization. In the process, they contradict several pub-
lished results, and claim to have unearthed and debunked
several “myths” that existed around the research of influ-
ence maximization.
It is the goal of this article to examine their claims ob-

jectively and critically, and refute the erroneous ones. Our
investigation discovers that first, the overall experimental
methodology in Arora et al. [1] is flawed and leads to scien-
tifically incorrect conclusions. Second, the paper is riddled
with issues specific to a variety of influence maximization
algorithms, including buggy experiments, and draws many
misleading conclusions regarding those algorithms. Impor-
tantly, they fail to recognize the trade-off between running
time and solution quality, and did not incorporate it cor-
rectly in their experimental methodology. In this article, we
systematically point out the issues present in [1] and refute
11 of their misclaims.

1. INTRODUCTION
Influence maximization in social networks is a well-studied

problem with applications in viral marketing, the study of
propagation of infections and innovation, and community
detection, to name a few. Over the last decade and a half,
substantial amount of research has been conducted on this
problem, resulting in a plethora of algorithms ranging from
heuristics to approximation algorithms, with varying levels
of quality, running time efficiency, and memory consump-
tion. In a recent paper titled “Debunking the Myths of In-
fluence Maximization: An In-Depth Benchmarking Study”
(SIGMOD 2017), Arora et al. [1] undertake a performance
benchmarking study of several well-known algorithms for
influence maximization. In the process, they claim to un-
earth several “myths” which they then claim to debunk. In
this article, we examine their claims objectively and criti-

cally, point out the errors in many of their claims and sys-
tematically refute them. We do this by trying to reproduce
their claimed experimental results. Importantly, our analy-
sis shows that first, the overall experimental methodology
employed by Arora et al. [1] is flawed and leads to scientifi-
cally incorrect conclusions. Second, a series of experimental
results claimed in [1] are a direct consequnce of improper
data preparation. We directly refute these claims by running
those experiments with proper dataset preparation, and by
running independent experiments in two different institu-
tions. Our findings squarely contradict their claims. Third,
we identify misleading claims made in [1] that fail to prop-
erly take into account the trade-off between running time
and memory consumption on one hand and accuracy and
quality of the solution obtained on the other. We illustrate
with examples that these misleading claims can be used to
draw obviously incorrect conclusions.

1.1 Influence Maximization Recap
We begin with a quick review of the problem. Influence

Maximization (IM) is an optimization problem studied ex-
tensively in the social network data mining literature during
the past decade and a half. Originally motivated by viral
marketing [11,25], IM was first formulated as a discrete op-
timization problem in a seminal paper by Kempe et al. [19].
We are given (1) a directed graph G = (V,E, p) as a so-
cial network, where nodes are individuals, edges represent
relationships, and p : E → [0, 1] specifies pairwise influence
probabilities (or weights) between nodes; (2) a positive in-
teger k, and (3) a stochastic diffusion model M which spec-
ifies probabilistic rules on how influence propagates from
one node to another in the graph. In such a network, acti-
vating a set of nodes S ⊆ V leads to a cascade of actions
in which the nodes S, typically called seed nodes, activate
at time t = 0, and activation propagates between nodes in
discrete time steps according to the model M . Two popular
diffusion models in the iterature are independent cascades
(IC) and linear threshold (LT). We refer the reader to [19]
for their description. Since M is stochastic, the number of
nodes that activate in a cascade is a random number. The
expected spread of S is defined as the expected total number
of activated nodes in a random cascade started by seed nodes
S. Formally, the expected spread is a function σM : 2V → R
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that maps every set of nodes to a positive real number, rep-
resenting the expected number of activated nodes over all
possible cascades started by seed nodes S.
The optimization problem is to find a set S ⊆ V of k seeds,

such that by activating S the expected spread of S under
model M , denoted σM (S) (or just σ(S) when M is under-
stood), is maximized. IM is a computationally challenging
problem: (i) it is NP-hard under a large family of stochastic
diffusion models [19] and (ii) for a given set of nodes S, com-
puting the spread function σ(S) is #P-hard under both IC
and LT models [5,7]. In response to this two-fold challenge,
there has been a large body of research on efficient and scal-
able IM algorithms, e.g., [2, 5–7, 10, 16–18, 20, 21, 23, 26, 27].
For convenience, technical descriptions of the algorithms rel-
evant to this article are provided in Appendix A.
In their paper, Arora et al. [1] undertake a performance

benchmarking study of several well-known algorithms for
influence maximization, including [5, 7, 16–18, 21, 26, 27]. In
this work, we critically examine the experimental method-
ology used in [1] and their various claims against the IM
algorithms proposed in the papers cited above.

1.2 Overview of Flaws and Misclaims in Arora
et al. [1]

Flaws in Experimental Design. One of the most em-
phasized aspects in Arora et al. [1] is the running time com-
parison. To this end, they focus on the following question
( [1], Section 5.1.1): “How much time it takes for an algo-
rithm to reach to its near-optimal spread?” (emphasis added
by us). They define “near-optimal” in an empirical sense.
We review their definition in Section 2, where we also con-
duct an in-depth analysis. Suffice it for now to note that
the “near-optimal” spread is algorithm specific and can thus
be drastically different for different algorithms. Thus, any
comparison of the running times of different IM algorithms
based on such an algorithm specific “near-optimal” spread
necessarily holds the algorithms to different bars! To ap-
preciate the seriousness of this issue, consider the following
example.

Example 1. Consider two hypothetical IM algorithms
A and B. Suppose that A is an approximation algorithm
that employs sophisticated sampling techniques, and thus the
more samples it draws, the higher the quality of seed sets it
can achieve. Suppose the “near-optimal quality” of A corre-
sponds to an estimated expected spread of 1000 for k = 10
seeds on some dataset D, and for that it takes 10 minutes.
Algorithm B is a simple heuristic that takes 1 minute to
get to its “near-optimal quality”, namely a spread of 100 for
k = 10 seeds on the same dataset D. Suppose also that with
fewer samples, Algorithm A achieves an estimated expected
spread of 100 and it takes only 0.1 minute to achieve this,
again with 10 seeds. A comparison between Algorithms A
and B solely based on the time taken by each to achieve its
own “near-optimal” spread would conclude that B is a better
algorithm despite the fact that A achieves what B achieves,
an order of magnitude faster!

In addition to the problematic issue of holding different
algorithms to different bars, as demonstrated in Example 1,
there are two more problems associated with the experimen-
tal methodology of [1], as discussed in Section 2: (i) As it
turns out, the definition of “near-optimal” spread in [1] al-
lows for a solution that can be arbitrarily worse than the

optimal spread, which calls into question the legitimacy of
the term “near-optimal” spread; (ii) No clear description is
offered by Arora et al. [1] on how exactly the parameters of
the algorithms were set in order to obtain the “near-optimal”
spread; as a result, it is unclear how each IM algorithm was
allowed to run to reach such spread.
Measuring Standard Deviation. Apart from the flawed
experimental design, other fundamental issues exist in their
approach. In Figure 12 of [1], Arora et al. reported a set of
standard deviation values, which are in turn used to deter-
mine the “near-optimal quality” of an algorithm. By design,
the correctness of these standard deviation measurements is
critical to the correctness of their entire set of running time
experiments. However, in our attempts to reproduce their
Figure 12, we found a significant discrepancy of 10x: The
standard deviation values obtained by us (validated at both
NTU and UBC independently) are 10 times larger than the
values claimed in Figure 12 of [1]. Section 2 will explain how
this issue has serious implications for the validity of all other
experiments in [1]1.
Algorithm-Specific Major Issues. Arora et al. [1]
claimed to unearth several “myths” and criticized a vari-
ety of IM algorithms in the process of “debunking” those
“myths”. Unfortunately, many of such claims are false. We
shall refute them in detail in Section 3. Here is an overview
of those claims and our refutation.
• TIM and TIM+ are the first scalable approximation al-
gorithms for IM proposed by Tang et al. [27] based on
the notion of reverse-reachable sets [2]. In [26], Tang et
al. proposed an improvement to TIM/TIM+, called IMM,
which leverages martingale theory to derive much tighter
bounds on the number of samples required for a given
guaranteed accuracy ε of spread estimation, compared to
TIM/TIM+. IMM is much more scalable than TIM+ in
the sense that for any given accuracy guarantee ε, IMM
requires far fewer samples to achieve that guarantee than
TIM+.
Arora et al. [1] ignore the notion of theoretical accuracy
guarantee and instead compare TIM+ and IMM on em-
pirical accuracy and reach an erroneous conclusion that
TIM+ sometimes scales better than IMM. This reveals a
lack of understanding of what theoretical guarantees are
about, which are concerned with the worst case, as op-
posed to empirical accuracy. In Section 3.1, we provide
more arguments and details refuting their conclusion. To
help appreciate the flaw in their scaling argument, we pro-
vide a simple example in Section 3.1. The example follows
the same argument as used by [1] and leads to the conclu-
sion that Chebyshev’s inequality is better than the Cher-
noff bound, which is clearly wrong!

• Arora et al. claim that the SimPath algorithm [17] failed
to finish on two datasets after 2400 hours (100 days!). A
careful examination of their results and the datasets used
reveals that they did not in fact preprocess the datasets
correctly before running the SimPath code (released in

1In our email correspondences with them, the authors of [1]
stated that they performed “binning” and “smoothing” to
remove outliers before calculating standard deviations. We
reached out to them again to request the relevant source
code for performing the exact same binning and smoothing
so that we could reproduce their results. Despite multiple
requests, we are still waiting for their source code.
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[17]), and as a result were stuck in an infinite loop. With-
out doing due diligence, they apparently simply let the
code run for 100 days and concluded it does not finish
in 100 days. Our experiments confirm that with correctly
prepared data, SimPath takes only 8.6 and 667 minutes
respectively to select 200 seeds on the two datasets tested,
i.e., DBLP and YouTube (Section 3.2). One of the conse-
quences of the incorrect results above is their claim that
between the algorithms SimPath and LDAG, LDAG is
more robust and is significantly faster under “uniform”
LT model. As we discuss in Section 3.2, our experiments
contradict their claims.

Issues with Overall Recommendations by [1]. In their
paper, Arora et al. make a recommendation for which IM al-
goithm to use under what circumstances. This is expressed
in the form of a decision tree (Figure 11(b) in [1]). As a pre-
view of the problems associated with this recommendation,
notice that the decision tree recommends that whenever one
has a low memory machine, the IM algorithm of choice is
EasyIM [13]. We note that the EaSyIM algorithm was pro-
posed by Galhotra, Arora, and Roy in SIGMOD 2016 [13].
Both Galhotra and Arora are authors of [1] as well. The
rationale offered by them is that EasyIM is supposedly the
most memory efficient IM algorithm and so should be used
when available memory is limited. Indeed, as the authors
point out, EasyIM stores only a scalar per node of the net-
work, which requires only a fraction of the memory needed
to store, e.g., reverse reachable sets. By this argument, the
Random algorithm, which randomly selects k nodes from
the network as seeds, requires even less memory since it
does not need to store anything! However, it is well known
that on many datasets, the expected spread achieved by the
Random algorithm is quite poor. What is missing in such a
recommendation is a consideration of the trade-off between
memory usage and spread achieved. We elaborate on the
issues and misleading claims on EaSyIM [13] in Section 4.

1.3 Roadmap
The rest of our article is organized as follows. The back-

ground knowledge on IM as well as the algorithms covered
in this article are covered in Appendix A. Section 2 ana-
lyzes the experimental design and methodology of [1] in de-
tail and points out the flaws therein. Section 3 focuses on
refuting algorithm-specific mis-claims. Section 4 discusses
various other issues, including the problems associated with
their claims on EaSyIM [13]. Appendix B discusses the is-
sue of CELF vs CELF++, while Appendix C briefly remarks
on the importance of understanding the source code of the
algorithms that one undertakes to benchmark.

2. ISSUES IN EXPERIMENTAL METHOD-
OLOGY AND SETTINGS

2.1 Standards of Benchmarking
There exist several different metrics for evaluating an IM

algorithm. Recall that some algorithms are just heuristics
and lack guarantees on the expected spread of the seed set
they return. We can only calibrate them on the empiri-
cal spread observed. For approximation algorithms, there
is both empirical spread and the theoretical guarantee on
the worst-case spread. It is important to recognize the dif-
ference between these two. Besides spread, there are factors

such as running time and memory usage. Any evaluation
and comparison of IM algorithms should take into account
the trade-off between resources like running time and mem-
ory on one hand and the achievable spread, i.e., empirical
or guaranteed spread. Achieving higher spread usually re-
quires larger computation costs in terms of running time
and memory usage.
Algorithms often have one or more parameters to allow

users to control this tradeoff, e.g., to reduce the computa-
tion time of the algorithm at the cost of spread, or vice
versa. For example, in case of Greedy with MC simulations,
the #MC simulations is a parameter that controls the trade-
off between accuracy and runing time. In case of TIM+ and
IMM, the accuracy parameter ε can be used to trade accu-
racy for memory as well as running time. As a consequence,
the setting of such parameters is crucial for benchmarking
different algorithms carefully. A standard practice for pa-
rameter setting is to tune the parameters to ensure that all
algorithms are held to the same performance bar on one or
more metrics, and then gauge their performance on the other
metrics.
Suppose that for some reason, we wish to deviate from

the standard practice and choose an alternative methodol-
ogy for benchmarking IM algorithms, then we must ensure
that the alternative methodology satisfies some minimum re-
quirements for soundness. Consider Figure 1 for an example.
It illustrates the expected spreads of two hypothetical IM al-
gorithms when their running time varies (due to parameter
tuning), for a given dataset and a seed set size k = 200. Ob-
serve that, in terms of the tradeoff between spread achieved
and computation cost, Algorithm A completely dominates
Algorithm B, since the former (i) yields a higher expected
spread when the two algorithms have the same computa-
tion time, and (ii) incurs a smaller running time when the
two algorithms offer the same expected spread. As such, if a
methodology for evaluating IM algorithms is sound, then it
should not conclude that Algorithm B is more favorable than
Algorithm A in terms of running time or spread achieved
when k = 200. Unfortunately, this is the very conclusion
that the methodology of [1] would draw, and hence it does
not pass this soundness check, as we elaborate below.

2.2 Flaws in Arora et al.’s Methodology
Essentially, the experimental methodology of [1] is driven

by the following question: How much time it takes for an al-
gorithm to reach to its near optimal spread? To answer this
question, Arora et al. choose a fixed parameter setting for
each influence maximization algorithm A, and then evalu-
ate A on three metrics: spread achieved, computation time,
and memory consumption. Specifically, if algorithm A has a
parameter p, then they first run A on four small datasets,
with a fixed seed set size k (k=200 in their settings), and
with p varying in a certain range. Let SD be the set of seed
sets returned by A on a dataset D for different p. Arora et
al. examine the expected spread of each seed set in SD us-
ing 10000 rounds of Monte-Carlo simulations, and identify
the seed set S∗D whose expected spread µ∗D is the largest. In
addition, they measure the standard deviation sd∗D of the
spread of S∗D in the above 10000 Monte-Carlo rounds. The
final parameter value p is set to a value that minimizes the
computation of A, subject to the constraint that A should
achieve an expected spread at least µ∗D−sd∗D, across all four
small datasets. In other words, they set p in a manner such

3
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Figure 1: The tradeoff between expected spread and running
time for two conceptual algorithms on a certain dataset, with
seed set size k = 200.

that A’s spread achieved is close to its “best” (or, “near-
optimal”). It is worth noting that once p is chosen for an
algorithm, it remains the same across all datasets, including
the bigger ones.

2.2.1 Issue 1: Different and arbitrary bars for dif-
ferent algorithms

Simply put, the “best” expected spread is algorithm spe-
cific and can be considerably different. By construction,
then different algorithms are not held to the same bar w.r.t.
expected spread. If an algorithm’s best expected spread is
higher than another, then Arora et al.’s methodology would
require the former to achieve a higher spread than the lat-
ter when it evaluates the two algorithms’ running time and
memory consumption. Such a setting unfairly penalizes al-
gorithms whose best expected spreads are large, and could
lead to erroneous conclusions regarding their efficiency and
memory overheads, as well as wrong recommendations for al-
gorithms to use for given situations. In other words, the fact
that an algorithm is capable of achieving a higher quality of
seed sets will be used against it in running time comparisons!
In the context of Figure 1, where k = 200, Algorithm
A (resp. Algorithm B) achieves its largest expected spread
µ∗A = 1600 (resp. µ∗B = 600) when its running time equals
214 seconds. Assuming that sd∗A = sd∗B = 200, then Arora et
al.’s setting would require Algorithm A to yield an expected
spread of at least µ∗A−sd∗A = 1400, in which case its running
time is at least 213 seconds. In contrast, Algorithm B is only
required to achieve an expected spread of at least µ∗B−sd∗B =
400, in which case its computation time can be as small as 1
second. Evaluating the two algorithms’ efficiency under such
a setting is clearly unfair to Algorithm A, and could lead to
incorrect conclusions such as the following:
1. Algorithm A is not scalable due to its excessive computa-

tion time needed to achieve a spread of 1400, even though
this is more than 3x the spread 400 expected of Algorithm
B.

2. Algorithm B is more efficient than Algorithm A, despite
the fact that Algorithm A can achieve the same spread
of 400 in lower running time!
Both conclusions clearly contradict the fact that Algo-

rithm A dominates Algorithm B, as depicted in Figure 1.
Now take a concrete example: In Section 5.3.1 of [1], Arora

et al. conclude that IMM is not scalable under the IC model.
However, this conclusion is drawn solely based on IMM’s
running time when it is required to achieve an extremely
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Figure 2: IMM on HepPH-IC: Running time (left Y -axis)
and spread at k = 200 (right Y -axis), with varying ε.
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Figure 3: A counter example showing µ∗ − sd∗ giving arbi-
trarily bad spread. In the example graph, we let m = n3.
(Credit: Yang and Pei [29])

high accuracy (with its parameter ε set to 0.05), as Arora
et al. experimental methodology demands that IMM should
yield an expected spread close to its best. Meanwhile, other
methods (e.g., EaSyIM) are not held to the same bar of
spread, since their best expected spreads are lower than that
of IMM. If we allow IMM to output less accurate results as
other methods do, then it would become much more efficient
and scalable.
For instance, consider Figure 2. It depicts results of our

experiments on IMM’s running time and spread achieved
(at k = 200) on HepPH dataset, under the IC model, with
ε varied over 0.05, 0.1, . . . , 0.5. Clearly, as ε increases, the
drop of spread is barely visible, while the running time goes
down drastically. We can see that ε = 0.05, the choice in [1],
is almost an extreme adversarial setting for IMM: It took
significantly more time, but produced only marginally better
spread than larger ε’s. For instance, from ε = 0.05 to 0.5, the
running time speed-up is about 68x, while the drop in spread
is only 2.1%! Similar observations hold for other datasets
too. It follows that without sacrificing spread too much, it
is possible to set ε to higher values, thus easily achieving
scalability.
Hence, Arora et al.’s claim that IMM does not scale is

invalid, and it is a consequence of their flawed experimental
methodology.

2.2.2 Issue 2: How close to optimal is “near-
optimal” spread?

Arora et al. [1] define the “near-optimal” influence spread
using µ∗ − sd∗, as mentioned in the beginning of Sec-
tion 2. This, unfortunately, is an ad-hoc choice and we show
through a counterexample contributed by Yu Yang and Jian
Pei [29] that the value of µ∗ − sd∗ can be arbitrarily worse
than the optimal influence spread. Consider Figure 3, where
the graph is constructed as follows. Let n ≥ 2 be a posi-
tive integer. There is a node v0 that has 2n outgoing edges,

4



pointing to v1, v2, . . . , v2n each with an influence probability
of 1

2n
. Each vi (i ∈ [1, 2n]) has n−1 out-neighbors each with

influence probability 1. Then we create m = n3 2-cliques:
{x1, y1}, {x2, y2}, . . . , {xm, ym}. Each pair {xj , yj} forms a
2-clique with influence probabilities being 1 on both edges.
Let I(S) denote the number of active nodes by the end

of a propagation when S is the seed set. Clearly, by defini-
tion, E[I(S)] = σ(S). For the example graph in Figure 3,
under the independent cascade model, when k = 1, it can
be verified that the following holds:

µ := E[I({v0})] = σ({v0}) = 1 + n, (1a)

sd :=
√

Var [I({v0})] = n

√
1− 1

2n
, (1b)

µ− sd = 1 + n

(
1−

√
1− 1

2n

)
≤ 1 + n

1

2n
= 1.5. (1c)

On the other hand, for all 2n3 nodes in the 2-cliques struc-
ture, their expected spread is 2 > 1.5 = µ − sd. If we ran-
domly select a node from this graph, then w.h.p. we will end
up with a node of spread 2. Arora et al. [1] use µ∗ − sd∗ as
the threshold for “near-optimal” spread. Since µ∗ and sd∗

are empirical estimates of µ and sd, one of the following
scenarios must hold true if their approach is followed:

1. µ∗ and sd∗ are reasonably close to µ and sd respectively.
Thus, µ∗−sd∗ should be reasonably close to µ−sd which
is bounded by a small constant 1.5 (Eq (1c)). As a result,
the threshold µ∗ − sd∗ used for defining “near-optimal”
spread can be arbitrarily smaller than the true optimal
spread µ since it has a Ω(n) gap to the latter. This in-
validates the use of µ∗− sd∗ as the threshold for defining
“near-optimal” spread.

2. The quantity µ∗ − sd∗ is reasonably close to the optimal
spread µ, thus justifying a definition of “near-optimal”
based on the threshold µ∗−sd∗. However, in this case, one
or more of the quantities in {µ∗, sd∗} must be a poor esti-
mate of their counterparts in {µ, sd}. This, by definition,
calls into question the accuracy of µ∗ and/or sd∗ itself,
and thus the validity of all experimental results based on
such poor estimates will be questionable at best.

2.2.3 Issue 3: Notion of reasonable time limit is
arbitrary and unclear

In addition to the fundamental issues mentioned above,
Arora et al.’s methodology suffers from yet another critical
issue. Recall that while choosing the value of parameter p
(which is used to control the trade-off between running time
and expected spread), Arora et al. allow algorithms to run
for a “reasonable time limit” (Section 5.1.1 of [1]). However,
unfortunately, no definition or value of reasonable time limit
for any of the studied algorithms is provided. This makes the
notion arbitrary and unclear, and worse, leaves “reasonable
time limit” open to interpretation. Clearly, as more time is
allowed, the parameter p gets stricter: e.g., more MC sim-
ulations or smaller accuracy parameter ε. In a fair world,
a strict upper bound T on running time would have been
provided, for all algorithms, making reasonable time limit
clear and concrete. In other words, not only Arora et al.’s
experimental methodology sets the bars unfairly for different
algorithms (as described in Section 2.2.1), even the method
for computing the bars (aka, “near-optimal” quality of each
algorithm) is ill-defined.

To appreciate the gravity of this issue, consider a thought
experiment where we have two exact replicas A1 and A2

of the same algorithm A. Assume that Arora et al.’s ex-
perimental methodology is not aware that A1 and A2 are
essentially the same algorithm. While tuning their parame-
ters p for the two algorithms, if the same upper bound on
running time T is not employed, then we will end up with
two different values of p, namely pA1 and pA2 for the two
replicas, respectively. W.l.o.g., suppose pA1 is stricter than
pA2 (e.g., smaller accuracy threshold ε). As a result, A1 and
A2 are necessarily held to different bars on spread and hence
we may conclude that one of them is more efficient than the
other. However, since A1 and A2 are replicas of each other,
such a conclusion is absurd.

2.3 Irreproducible Results in Arora et al.’s Pa-
rameter Setting

Furthermore, we are unable to reproduce a vital exper-
iment in [1] that was used to determine the parameter of
each algorithm. We now elaborate on this.
Recall that Arora et al. set the parameter p of each algo-

rithm A such that it yields a seed set whose expected spread
is at least µ∗ − sd∗, where µ∗ is the expected spread of the
best seed set S∗ that A can produce over a range of values of
p, and sd∗ is the standard deviation of S∗’s spread in 10000
rounds of Monte-Carlo simulations. In other words, Arora et
al.’s parameter setting for A highly depends on the measure-
ment of µ∗ and sd∗. In Figure 12 of [1], Arora et al. report
their measurements of µ∗ and sd∗ for IMM, using seed set
size k = 200 and varying the number of Monte-Carlo rounds
from 1000 to 20000. Values of sd∗ for other algorithms are
not reported in their paper2.
We attempted to reproduce Arora et al.’s results on two

of the datasets that they use, i.e., Nethept and HepPH. On
each dataset, we used their setting and ran IMM with ε =
0.05 and k = 200 to obtain S∗, and then measured µ∗ and
sd∗ using r rounds of Monte-Carlo simulations, with r vary-
ing from 1000 to 20000. We compute µ∗ = 1

r

∑r
i=1 Ii (S∗) ,

where Ii (S∗) denotes the spread of S∗ in the i-th Monte-
Carlo round. In addition, we compute sd∗ using the standard
formula for sample standard deviation:

sd∗ =

√√√√ 1

r − 1

r∑
i=1

(Ii (S∗)− µ∗)2 (2)

Figure 4 illustrates the values of µ∗ and sd∗ that we obtain
from each dataset under the IC, WC, and LT models. On
Nethept, the values of sd∗ under the IC, WC, and LT mod-
els are approximately 50, 90, and 150, respectively, while on
HepPH, the values of sd∗ under the IC, WC, and LT mod-
els are roughly 60, 120, and 300, respectively. In contrast,
the values of sd∗ reported in Figure 12 of [1] (for 10000
Monte-Carlo rounds) are around 10 times smaller than the
corresponding values in Figure 4. For instance, in case of
the IC model on Nethept, Arora et al. report that sd∗ < 5.
Such a small sd∗ is anomalous given the large amount of
randomness in Monte-Carlo simulations.
We note that such significant errors (10x gap) in the mea-

surement of sd∗ have serious implications on all experimen-
tal results in [1]: If sd∗ is measured incorrectly, then the
2We requested the authors to share their code that com-
putes standard deviations. Unfortunately, even after several
attempts, we are still waiting for their code.
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Figure 4: µ∗ and sd∗ on Nethept and HepPH.

parameter settings for all experiments in [1] are erroneous,
since the latter are decided based on the former. To correct
such serious errors, all experiments in [1] would have to be
re-run. We elaborate further on this in the next para.
Reasons for Discrepancy.We corresponded with Arora et
al. via email regarding the above issue on sd∗, and were told
that the discrepancy is due to the fact that they performed
“binning” and “smoothing” operations on the distribution
before calculating sd∗. They claimed that such operations
were done to “remove outliers”. It is noteworthy that there
is no mention of binning and smoothing in the paper [1].
We requested them for a detailed explanation of how they
performed binning and smoothing and/or the code they used
for performing these operations. Despite multiple reminders,
we are still waiting for their code and explanations.
Regardless of how this “binning” was conducted, we note

that there are at least three serious issues at hand here. First,
Eq (2) is the standard definition of sample standard devia-
tions, and thus conducting any “binning” operations prior to
the application of Eq (2) and still calling it “standard devi-
ation” (i.e., without any qualification) is misleading at best.
Second, the notion of “outliers” is irrelevant when measur-
ing standard deviations because, for any random variable v
sampled from a distribution Ω, the standard deviation of v
is defined over all possible samples from Ω – that is, by defi-
nition, no sample from Ω should be ruled as outliers. Third,
in the paper itself [1], there is no mention of the “binning”
operations at all, which is rather strange given that they
have such profound effects in the measurement of sd∗.
For instance, if no “binning” or “smoothing” is done and

sd∗ of IMM is taken from our Figure 4(d), then IMM would
be allowed to run with a spread bar of 4380. From Figure 2,
this implies that ε can be set at 0.35, with running time 29.8
sec, a 37.2x speed-up compared to ε = 0.05!

3. REFUTATIONS ON ALGORITHM-
SPECIFIC MISCLAIMS

Not only the paper has an ill-designed experimental
methodology as highlighted above, it is also riddled with
various misclaims. This section investigates some of the
algorithm-specific issues and misclaims.

3.1 TIM+ vs. IMM

Misclaim 1. “Both TIM+ and IMM do not scale be-
yond HepPh in terms of memory-consumption under the IC
model.” – [1], Section 5.2, Section 5.3.1, Section 5.4 (re-
peated).

Refutation: Arora et al. make this claim solely based on
the running time of TIM+ and IMM when they set ε = 0.05.
This setting, as we mentioned in Section 2.3, requires TIM+

and IMM to generate extremely accurate results, which
significantly increases the computation overheads of both
algorithms. In contrast, other algorithms compared (e.g.,
EaSyIM) are allowed to produce less accurate results (due to
the experimental methodology used in [1] – see Section 2.1),
which leads to much smaller computation costs. If we lower
the accuracy of IMM to the same level as other algorithms
(e.g., EaSyIM), then it would become much more scalable.
Therefore, the above claim is invalid.

Misclaim 2. “TIM+ is faster than IMM under LT
model.” – [1], Section 5.3.1, Section 6, M3 (repeated).

Refutation: Arora et al. compare the empirical running
time of TIM+ and IMM under the LT model by setting
ε = 0.1 for TIM+ and ε = 0.05 for IMM, and they conclude
that TIM+ is empirically more efficient than IMM under the
LT model. Unfortunately, the comparison is meaningless and
the conclusion made is invalid, as we explain in the following.
Both TIM+ and IMM rely on drawing subgraph samples

(i.e., RR-sets [2]) for influence maximization. For both al-
gorithms, the number of samples used is decided based on
the given theoretical worst-case accuracy threshold ε, and the
running time of the algorithms almost solely depends on the
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sample number. IMM offers a tighter asymptotic bound of
sampling accuracy than TIM+ does, and hence, for a given
ε, it can use a smaller sample set than TIM+ to achieve a
(1−1/e−ε)-approximation. In other words, IMM is more ef-
ficient than TIM+ when they are held to the same worst-case
accuracy threshold ε, as convincingly demonstrated in [26].
In contrast, Arora et al. compare the efficiency of TIM+

and IMM under the LT model with ε = 0.1 for TIM+ and
ε = 0.05 for IMM3, which is meaningless given the differ-
ences in the ε value, as different ε values represent different
approximation guarantees of the solutions. A slightly more
sensible comparison is to evaluate the computation cost of
the two algorithms when they achieve the same empirical
accuracy. However, in that case, the comparison is moot and
should lead to only one conclusion: they have roughly the
same running time when their empirical accuracies are the
same. The reason is that the empirical accuracy of the two
algorithms depends only the sizes of the sample sets that
they use. If the experiment is set up in such a way that the
two algorithms will yield the same empirical accuracy, then
the number of samples that they use should be roughly the
same, in which case their running time would also be similar.
Therefore, it is incorrect to claim that TIM+ is more efficient
than IMM under the LT model, regardless of whether the
accuracy metric concerned is the empirical expected spread
or the worst-case accuracy threshold ε.

Profound nature of Arora et al.’s mistakes. In fact,
comparing the empirical accuracies of TIM+ and IMM is
analogous to comparing the empirical accuracies of Cher-
noff’s bound and Chebyshev’s inequality when estimating
the mean of a random variable. Such a comparison is not
useful at all, since the empirical accuracy of the estimation
would be the same as long as the sample set size is the same.
Recall that Chernoff’s bound is tighter than Chebyshev’s in-
equality, if one aims to achieve a given theoretical guarantee.
Ironically, Arora et al.’s experimental design may even

lead to an obviously incorrect conclusion that Chebyshev’s
inequality is superior to Chernoff’s bound, as we explain in
the following. Let x1, x2, . . . , xn be i.i.d. samples drawn from
some distribution over [0, 1] with mean µ and variance σ2.
Chebyshev’s inequality says that for any c > 0,

Pr

[∣∣∣∣∣ 1n
n∑

i=1

xi − µ

∣∣∣∣∣ ≥ c
]
≤ σ2

nc2
,

which is equivalent to

Pr

[∣∣∣∣∣ 1n
n∑

i=1

xi − µ

∣∣∣∣∣ ≥ εµ
]
≤ σ2

nε2µ2
.

Meanwhile, Chernoff’s bound says

Pr

[∣∣∣∣∣ 1n
n∑

i=1

xi − µ

∣∣∣∣∣ ≥ εµ
]
≤ 2 exp

(
−nµε

2

3

)
.

In other words, from Chebyshev’s inequality, if we are to
use 1

n

∑n
i=1 xi as an estimation of µ and we aim to achieve ε

3The root cause of selecting different ε values goes back to
their ill-designed experimental methodology, which is high-
lighted in Section 2

relative error with at least 1−δ probability, then the number
n of samples required should satisfy

n ≥ σ2

δ · ε2µ2
.

Meanwhile, if we apply Chernoff’s bound instead, we have

n ≥ 3 log(2/δ)

ε2µ
.

It can be verified that the number n from Chernoff’s bound
is smaller whenever 3δµ log(2/δ) ≤ σ2. For example, Table 1
shows the sample numbers required by Chebyshev’s inequal-
ity and Chernoff’s bound when µ = σ = 1/2, δ = 10−3, and
for various values of ε.
Suppose that we are to compare the “empirical efficiency”

of Chebyshev’s inequality and Chernoff’s bound, following
Arora et al.’s methodology. In that case, we first fix δ (e.g.,
δ = 10−3) and, for Chebyshev’s inequality (resp. Chernoff’s
bound), we set a threshold τ1 (resp. τ2) on the maximum
absolute error allowed in the estimation of µ. (This is in the
same spirit of requiring an influence maximization algorithm
to achieve an expected spread of at least µ∗ − sd∗.) For
simplicity, assume that τ1 = τ2 = τ .
Next, we vary ε in {0.05, 0.1, 0.15, 0.20, . . .}. (Arora et al.

use this set of ε values in their evaluation of TIM+ and
IMM.) For each ε, we compute the number n of samples re-
quired by Chebyshev’s inequality (resp. Chernoff’s bound),
and measure the empirical error in the estimation of µ when
we use n samples from Ω. Suppose that ε1 (resp. ε2) is the
largest value of ε for which Chebyshev’s inequality (resp.
Chernoff’s bound) has an empirical error no more than τ .
Then, we will compare the sample number n1 required by
Chebyshev’s inequality with ε = ε1 against the number n2

required by Chernoff’s bound with ε = ε2, and we declare
that Chebyshev’s inequality is empirically more efficient if
n1 < n2.
For the sake of argument, assume that when we use at

least 10000 samples from Ω, the estimation of µ has at most
τ error with at least (1 − δ) probability. Then, in the con-
text of Table 1, we can see that ε1 = 0.3 and ε2 = 0.05.
Accordingly, n1 = 11112 and n2 = 18243, which leads to the
conclusion that Chebyshev’s inequality is empirically “more
efficient” than Chernoff’s bound!

3.2 SimPath vs. LDAG
We now address the misclaims made by Arora et al. [1]

against the SimPath algorithm [17]. Importantly, while at-
tempting to reproduce their experiments, we obtained re-
sults directly contradict [1], and are in support of the orig-
inal SimPath paper [17]. We will explain the discrepancies.
We have verified all results presented in this subsection on
both NTU and UBC servers4.

3.2.1 Misclaims in Arora et al. & Refutations

Misclaim 3. “SIMPATH fails to finish even after 2400
hours on DBLP and YouTube.” – [1], Section 5.3.1 and Sec-
tion 6, M5 (repeated).

Refutation: Unfortunately, Arora et al. failed to supply
compatible datasets to the SimPath source code [15] released
4Unless otherwise stated, whenever running time numbers
are mentioned in text, they are taken from the UBC results.
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ε 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 · · ·
Chebyshev 400000 100000 44445 25000 16000 11112 8164 6250 · · ·
Chernoff 18243 4561 2027 1141 730 507 373 286 · · ·

Table 1: Sample size required by Chebyshev’s inequality and Chernoff’s bound for various ε (µ = σ = 1/2, δ = 10−3).
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Figure 5: Running time of SimPath and LDAG, on DBLP and YouTube datasets. Note that the UBC server has faster CPUs
and larger memory, and hence generally both algorithms run faster on the UBC server.

by Goyal et al. [17], and ran into infinite loops for at least
2400 hours. We have reached out to Arora et al., and they
have acknowledged this issue. In particular, the code reserves
node-id “0” for backtracking purposes, and therefore assumes
that all input node-ids are positive integers. However, the
datasets used by Arora et al. contain 0 as node-ids. They
neither preprocessed the datasets correctly, nor did they at-
tempt to debug it when their experiments were stuck in an
infinite loop for 100 days.
With corrected input data, we verified that SimPath fin-

ishes within just a tiny fraction of 2400 hours: It took just
8.6 minutes on DBLP and 667 minutes on YouTube to select
200 seeds, representing 0.00597% and 0.463% of 2400 hours,
respectively (Figure 5)!

Misclaim 4. “We discover that SIMPATH provides
faster performance than LDAG only on the “parallel edges”
LT model, which is used in the SIMPATH paper [15]. In our
experiments, we use the “uniform” LT model.” – [1], Section
5.3.1 and Section 6, M5 (repeated).

Refutation: Since the two datasets, DBLP and YouTube,
on which Arora et al. ran into infinite loops happen to
be prepared according to the so-called “LT-uniform” model,
Misclaim 4 is in fact an corollary of Misclaim 3, and thus
incorrect.

Misclaim 5. “In the SIMPATH paper, these two tech-
niques are not evaluated beyond 100 seeds and thus this ob-
servation remained hidden. ” – [1], Section 6, M5.

Refutation: Almost all major IM work published prior to
or shortly after SimPath [4–7,18–20] conducted experiments
with k = 50 seeds or less, including the LDAG paper it-
self [7]. Hence, Misclaim 5 is ignorant of the historical con-
text of the research in this domain. Moreover, the very trend
that the running time of LDAG grows slower than SimPath
as k increases can be observed directly from the original
SimPath paper (cf. Figure 4 in [17]). The usage of “hidden”
by Arora et al. is misinformed and misleading.

Misclaim 6. “Overall, these results indicate that LDAG
not only scales better than SIMPATH but is also more robust
to the underlying diffusion model.” – [1], Section 6, M5.

Refutation: Our results on the YouTube dataset directly
refute this misclaim: Figure 5 shows that when k = 200,
SimPath took 667 minutes while LDAG took 5047 minutes,
which amounts to a gap of 7.5x favoring SimPath. As re-
futed in Misclaim 4, the distinction between the so-called
“LT-uniform” and “LT-parallel” models actually stems from
an infinite loop, in turn the result of not preprocessing the
data correctly. Therefore, LDAG being “more robust to the
underlying diffusion model” is incorrect.

Misclaim 7. “Note that LDAG [6], IRIE [16] and SIM-
PATH [15] do not have any external parameters, and thus
this analysis does not cover them.” – [1], Section 5.1.1.

Refutation: Arora et al. define the external parameter as
follows5: It controls the quality and running time trade-off
for the algorithm, and can be explicitly configured by the
user. Unfortunately, the authors have overlooked the fact
that both LDAG and SimPath do have such a parameter,
and both papers clearly stated so.

• LDAG: Section IV.B, [7]: “... controlling the size of the
LDAG using parameter θ, which represents a tradeoff be-
tween efficiency (smaller DAGs and thus faster compu-
tations) and accuracy (larger DAGs and more accurate
influence result).”

• SimPath: Section I.A, [17]: “We propose a parameter η
to control the size of the neighborhood that represents
a direct trade-off between accuracy of spread estimation
and running time.” In fact, Table III in [17] shows the
trade-off between spread achieved and running time by
varying parameter η, on two different datasets.

In the released code [15], both θ in LDAG and η in Sim-
Path can be set or changed in a plain-text configuration file;
no code change is required.
5The definition of “external parameters” can be seen from
the following exact quotes in [1]: Section 3.1.1 states “Major-
ity of IM algorithms M possess an external parameter which
controls its accuracy... The more stringent the choice of this
parameter the better the accuracy. Consequently, the more
the running time.” In addition, Section 5.1.1 states “The ex-
ternal parameters are exposed through the API and can be
tuned to optimize performance.”
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3.2.2 Reasons for Discrepancies
As mentioned, Misclaims 3, 4, and 6 are caused by the fact

that Arora et al. [1] did not use compatible datasets with our
SimPath source code [15], and got stuck in an infinite loop
for 100 days. To explain why an infinite loop may occur, first
recall that the SimPath algorithm has a backtracking pro-
cedure (Algorithm 2 in [17]) to estimate expected influence
spread. The code makes use of integer “0” as a dummy node
id for resetting the FIFO queue in backtracking. If there
exists a node in the graph with real node id 0, then when-
ever backtracking is called on this node, an infinite loop will
occur because the code cannot distinguish between the real
node id 0 and the dummy id 0.
It is worth noting that depending on the graph structure,

not all nodes may reach the backtracking stage. Therefore,
the mere presence of node id 0 in the input graph may not
always lead to infinite loops. Arora et al. apparently ran into
infinite loops for two datasets: DBLP and YouTube. Unfor-
tunately, they did not attempt to understand or debug the
code and instead chose to continue running the experiments
for 2400 hours (100 days)6.

3.2.3 Experiments and Analysis
We ran experiments on the DBLP and YouTube datasets

(“LT-uniform”) to attempt to reproduce Misclaims 3, 4 and
6. As mentioned earlier, we obtained results sharply contra-
dicting the above misclaims.
The DBLP dataset contains 317K nodes and 1.05M undi-

rected edges. The YouTube dataset contains 1.13M nodes
and 2.99M undirected edges. See Table 1 in [1] for de-
tailed statistics. In both datasets, the graphs are undirected.
As with [1], we direct all edges in both directions and
for each resultant directed arc (u, v), the influence weight
pu,v = 1.0/indegree(v) (as per the definition of “LT-uniform”
in [1]). To avoid infinite loops, we preprocessed the data such
that only positive integers are used as node ids.
We ran the experiments at both UBC and NTU, indepen-

dently. The executors used the same source code, configu-
rations, and input graph files. The UBC server runs Open-
SuSE, has 16-core Intel Xeon X5570 CPUs at 2.93GHz each,
and 94.4GB RAM. The NTU server runs Debian, has 6-core
Intel Xeon CPUs E5645 at 2.40GHz each, and 32GB RAM.
Every experiment (one particular algorithm on one particu-
lar dataset) was run as the only active process on the server,
except for those required by the operating system.

Results and Analysis. As with [1], we set k = 200. The
running time obtained on the UBC and NTU servers are
shown in Figure 5. Raw numbers can be viewed in our pub-
lic GitHub repository7. The trends (growth of running time
as k increases) are consistent on both datasets. The UBC
server has faster CPUs and larger main memory, and hence
the absolute values of the running time are smaller in Fig-
ure 5(a)(b) than Figure 5(c)(d). To re-iterate, our results
here directly and clearly refute Arora et al.’s misclaims on
SimPath’s running time.

6We would like to gently remind the reader that any unsup-
ported experimental code can encounter unforeseen issues,
and users are encouraged to understand the code instead of
applying it blindly. In case of unexpected results, debugging
helps. Typically no warranty or author liability is attached
to open source code, as in the case for our code as well.
7https://github.com/jjboo/simpath-results

• Refutation on Misclaim 3: SimPath took just 8.6 minutes
on DBLP and 667 minutes on YouTube fo selecting 200
seeds, representing 0.00597% and 0.463% of 2400 hours,
respectively.
• Refutation on Misclaim 4: Both DBLP and YouTube
datasets here are prepared under the “LT-uniform” def-
inition. Figure 5 shows that SimPath is clearly the winner
on the larger YouTube data, taking 667 minutes to select
200 seeds, while LDAG takes 5047 minutes. On DBLP
data, SimPath is faster initially and LDAG catches up
after approximately 130 seeds.
• Refutation on Misclaim 6: The 7.5x gap between Sim-
Path’s (667 minutes) and LDAG’s (5047 minutes) run-
ning time on YouTube directly refutes Misclaim 6. While
LDAG is indeed a significant algorithmic contribution to
IM under the LT model, it takes more than 3 days to finish
selecting 200 seeds on a graph with 1.1M nodes whereas
SimPath finished in 667 minutes.

Further Remarks. This exercise in fact illustrates different
natures of SimPath and LDAG, and their respective advan-
tages. LDAG does most of its work upfront, constructing a
local directed acyclic graph for each node before going on to
mine seeds. Once the local DAGs are built, the seed selec-
tion process is relatively fast. The SimPath algorithm, on the
other hand, estimates the expected influence spread directly
on the original input graph and intelligently enumerates and
prunes simple paths to achieve this goal. As the seed set size
increases, the number of paths that SimPath needs to ex-
amine increases, resulting in larger running time. Given the
very different nature of LDAG and SimPath, it is not sur-
prising at all that on certain datasets, LDAG may regain
advantages as the seed set size becomes larger.

4. REFUTATIONS ON OTHER MIS-
CLAIMS

In addition to the list of serious issues discussed exten-
sively in Sections 2 and 3, [1] contains several other incor-
rect, misleading, and/or unscientific statements. Next, we
shall give a non-exhaustive list and discuss them in detail.

4.1 Misclaims about EaSyIM [13]
EaSyIM is an algorithm proposed by Galhotra, Arora, and

Roy in SIGMOD 2016 [13]. Arora et al. [1] make the follow-
ing claims on the superiority of EaSyIM:

Misclaim 8. “EaSyIM [10] is most memory-efficient ...
EaSyIM only stores a number per node. Consequently, it is
the most memory efficient technique for IM.” – [1], Section
5.4.

Misclaim 9. “Fig. 11b presents the decision tree for
choosing the best IM technique given the task and resources
in hand... When main memory is scarce, EaSyIM, CELF,
CELF++ and IRIE provide alternative solutions. Among
these, EaSyIM easily out-performs the other three techniques
in memory footprint, while also generating reasonable quality
and efficiency. Overall, the choice is between four techniques:
IMM, TIM+, EaSyIM, and PMC.” – [1], Section 7

Refutation. Arora et al. [1] helpfully summarize their em-
pirical findings in the form of a decision tree which is in-
tended to make recommendations for what IM algorithm
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to use under what circumstances. Let us examine a couple
of recommendations coming out of their decision tree and
compare those recommendations with common sense.
Consider the IM problem under the LT model over a large

dataset. Suppose available main memory is large. Then ac-
cording to their decision tree, one should use TIM+ and not
IMM. We have already established in Section 3.1 that un-
der all major diffusion models including LT, IMM strictly
dominates TIM+ in the sense that for any desired theoret-
ical worst case guarantee ε, IMM can deliver a seed set S
of size k whose expected spread is guaranteed to be at least
(1 − 1/e − ε) · OPT , w.h.p., with far fewer RR-sets than
TIM+ can. While TIM+ can provide the same guarantee, it
comes at the price of many more RR-sets than needed by
IMM. If following Arora et al.’s argument we go ahead and
use TIM+ instead of IMM, it is true that sometimes one
may obtain the same empirical accuracy as IMM with fewer
RR-sets than dictated by the worst-case guarantee. But this
accuracy is not always guaranteed. Thus, this recommenda-
tion can lead to a poor choice of algorithm.
As a second example, in that decision tree, Arora et al.

recommend EaSyIM [13] as the best choice for all three diffu-
sion models (i.e., IC, WC, and LT) when “memory is scarce”,
and claim that EaSyIM is “generating reasonable quality
and efficiency” without rigorously defining what exactly is
meant by “reasonable”. This recommendation is misleading
and questionable for several reasons.
First, Table 3 in [1] itself presents contradicting results:

For the WC and LT settings, EaSyIM “did not terminate
even after 40 hours”8 on Orkut, Twitter, and Friendster.
The only dataset in Table 3 that EaSyIM can handle is Live-
Journal, which is only 2.5GB in size. This demonstrates that
EaSyIM does not really offer reasonable efficiency or scal-
ability, certainly not comparable to IMM or TIM+ which
finish on all datasets. Second, given that EaSyIM cannot
handle the datasets larger than 2.5GB under WC and LT, it
cannot really be recommended whenever “memory is scarce”.
For example, consider that we have a 4GB dataset and 5GB
memory. The memory size is relatively small in compari-
son to the dataset size, and yet, EaSyIM would not be able
to process the data due to its excessive computation cost.
Third, given that nowadays, desktop computers (resp. work-
stations) can easily have more than 8GB (resp. 32GB) of
memory, it is unrealistic to assume that one needs to pro-
cess a smaller-than-2.5GB dataset with a machine whose
memory is small with respect to the data.
Further, Misclaim 8 declares in absolute terms that

EaSyIM [13] is the most memory-efficient technique for IM.
The rationale is that EaSyIM requires just a single number
to be stored per node. So, by the same argument, one could
prefer the Random algorithm, which randomly chooses k
seeds, over all algorithms, including EasyIM, since Random
does not require any information to be stored per node. At
another extreme, basic Greedy with MC simulations can also
be chosen over EasyIM, as it also stores only one number per
node. Consider the extreme nature of these choices. Ran-
dom is extremely fast but can lead to poor spread. Greedy
with MC simulations can lead to very high spread depend-
ing on the number of simulations employed, but is extremely
slow. Thus, an argument for choosing an algorithm solely
based on its low memory consumption is ill-conceived as it

8Exact quote from the caption of Table 3 in [1].

ignores other equally important factors like running time
and spread.

4.2 Misleading “Myths” and Other Issues

Misclaim 10. “M2. CELF (or CELF++) is the gold
standard for quality” – [1], Section 6, M2.

Refutation. This is a myth Arora et al. [1] claimed to have
found from the influence maximization literature. Their ar-
gument is that the solution quality of CELF (or CELF++)
depends on the number of Monte Carlo (MC) simulations.
First of all, CELF and CELF++ are both heuristic opti-
mizations on top of the vanilla greedy approximation algo-
rithm, that save on the number of marginal gain computa-
tions and have nothing to do with “quality”. It is well known
that the quality solely depends on the number of MC simu-
lations, which are used to compute the spread function, and
which are orthogonal to the CELF and CELF++ optimiza-
tions. Hence, CELF or CELF++, per se, has nothing to do
with quality. In particular, it is strange to suggest that a
heuristic, for saving on marginal gain computations, in and
of itself can be a standard of anything leave alone gold stan-
dard of quality!

Misclaim 11. “M6. WC is equivalent to IC. Several tech-
niques have misused the term IC ... they claimed to be the
state-of-the-art for IC. In reality, they all fare poorly on the
generic IC model ...” – [1], Section 6, M6.

Refutation. It is correct that IC and WC indeed have dif-
ferent meanings. However, the comments of Arora et al.,
quoted above, are misinformed and misleading.
IC refers to the “Independent Cascade” model, while “WC”

stands for “Weighted Cascade”, which is one method to
compute influence probabilities under the IC model, i.e.,
pu,v = 1/indegree(v). One can use the WC method to com-
pute influence probabilities, and find seeds in the IC model.
That said, there does exist an early work [6] (2009) that
freely used “IC” to refer to the two things collectively. Con-
sider the following two methods of assigning influence prob-
abilities: (1) the WC method; (2) assigning an identical in-
fluence probability of 0.1 to all edges in the graph. Both (1)
and (2) are just two different methods of assigning probabil-
ities. Neither of them is generic. In particular, method (2)
grossly oversimplifies reality as there is no reason to believe
that all edges will have the same influence probability! Sur-
prisingly, Arora et al. refer to (2) “general IC model” and go
on to use this as a tool to criticize many prior papers.

Finally, regarding the experimental platform used in [1],
Arora et al. state that in Section 5 (emphasis added): “All
experiments are performed using codes written in C++ on
an Intel(R) Xeon(R) E5-2698 64-core machine with 2.3 GHz
CPU and 256 GB RAM running Ubuntu 14.04.” and “IRIE
[16] was compiled on a Microsoft Windows 7 machine pos-
sessing the same configuration.”
Observations & Remarks. Essentially, Arora et al. [1]
ran one algorithm (IRIE) on Windows 7 while all other al-
gorithms on Ubuntu (Linux). Then the running time and
memory usage of IRIE are squarely compared together with
all other Linux-run algorithms (see Figure 7 and 8 of [1]).
This is clearly an unscientific approach to benchmarking.
At the very least, a benchmarking experiment should be
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done using the same operating system platform. This is es-
pecially critical for C++ as the compilation and optimiza-
tion of C++ code are vastly different for Linux (e.g., gcc)
and Windows (e.g., Microsoft Visual Studio).

5. CONCLUSIONS
The benchmarking paper by Arora et al. [1] claims to

unearth and debunk so-called “myths” that allegedly propa-
gated in the Influence Maximization research literature over
the years. However, our refutations show that not only their
experimental methodology is ill-designed and flawed, many
of their specific experimental results and claims are incor-
rect. In particular, they fail to incorporate the trade-off be-
tween running time and the seed set quality correctly in
their experimental methodology. In addition, they fail to
distinguish between theoretical guarantee on spread from
empirical spread, resulting in misleading and often wrong
recommendations of IM algorithms to use under given re-
source constraints.
In this paper, we have systematically refuted the exper-

imental methodology of Arora et al. and 11 of the specific
claims made in their paper.
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APPENDIX
A. BACKGROUND ON INFLUENCE MAX-

IMIZATION
Two classical stochastic propagation models were stud-

ied by Kempe et al. in [19]: Independent Cascade (IC) and
Linear Thresholds (LT), both of which originally stem from
mathematical sociology. For the exact definitions of IC and
LT models, we refer the reader to [3, 19]. Kempe et al. [19]
showed that the problem of Influence Maximization (IM)
is NP-hard under both models. Further, Chen et al. [5, 7]
showed that under both models, it is #P-hard to compute
the exact value of the expected influence spread σ(S), for
any seed set S. As a result, IM is a computationally challeng-
ing problem. Kempe et al. [19] established that the spread
function σ(·) is monotone9 and submodular10 under both
IC and LT models. Hence, by applying a seminal result
in Nemhauser et al. [22], one can use a simple greedy hill-
climbing style algorithm to achieve an approximation factor
of (1− 1/e− ε), for any ε > 0. The existence of ε is because
it is #P-hard to compute the spread function σ(·) exactly,
and hence Monte Carlo (MC) simulations need to be used
jointly with the greedy algorithm. The greedy approxima-
tion algorithm starts with S = ∅, and runs for k iterations. In
each iteration, it selects into S a node that yields the largest
marginal gain, defined as σ(S∪{u})−σ(S). We refer to this
as the simple Greedy algorithm with MC simulations.
The computational costs associated with MC simulations

are inevitably high, rendering the greedy algorithm quite
inefficient and unable scale to large graphs. Several notable
improvements have been made since then [2,3,5,7–9,12,14,
17,18,21,24,26–28], some of which are covered in this paper.
We next recall them briefly.
CELF [21]. The vanilla greedy algorithm coupled with MC
simulations, is rather simplistic. In each iteration, for all
w ∈ V \ S (all nodes in the graph except for those already
selected as seeds), a re-computation of its marginal gain
σ(S ∪ {w})− σ(S) is done. CELF, for Cost-Effective Lazy-
Forward, employs a clever optimization technique: It sorts
nodes in non-increasing order of their latest marginal gain
value (in a max-heap), and only recomputes the marginal
gain of a node when this particular node surfaces to the
root of the max-heap.
CELF++ [16]. A poster paper by Goyal et al. [16] built
on top of CELF and tried to further improve the greedy al-
gorithm by leveraging submodularity “more aggressively”.
Whenever an evaluation of marginal gain is carried out,
CELF++ also does a speculative, look-ahead marginal gain
9A set function f is monotone if f(S) ≤ f(T ) whenever
S ⊆ T .

10A set function f is submodular if f(S ∪ {x}) − f(S) ≥
f(T ∪ {x}) − f(T ), for all S and T where S ⊆ T and all
x 6∈ T .

computation. More specifically, for each node w, CELF++
records the current best node in the max-heap (let us
call it w∗) and computes σ(S ∪ {w}) − σ(S) and σ(S ∪
{w,w∗}) − σ(S ∪ {w∗}) together. Then, by definition of
submodularity, as long as w∗ indeed gets chosen as a seed,
σ(S ∪ {w,w∗})− σ(S ∪ {w∗}) will be readily available. No-
tice that both CELF and CELF++ are heuristics that help
save on the number of marginal gain computations and are
completely orthogonal to the MC simulations. It is obvious
that the quality of expected spread estimation is controlled
by the # MC simulations used and has nothing to do with
CELF or CELF++.

LDAG [7]. Chen et al. [5] proposed the LDAG (stands for
Local Directed Acyclic Graph) heuristic for solving IM under
the Linear Threshold (LT) model. The main intuitions is
that (1). even though computing exact influence spread is
#P-hard in the LT model, it can be done in linear time on
DAGs; (2). as a heuristic, the influence propagates to and
from a node can be estimated using a local neighborhood
surrounding the node, instead of the whole graph. Hence, a
two-phase heuristic algorithm, LDAG, was proposed. First,
for each node v ∈ V , one local DAG structure is constructed.
Second, seeds are selected in greedy order with marginal
gains estimated using the DAGs. LDAG achieved impressive
results – it was shown to be orders of magnitude faster than
the greedy algorithm (with CELF), without sacrificing much
solution quality.

SimPath [17]. LDAG has a few limitations, e.g., memory
consumption and the slight aggressive nature of keeping only
one DAG per node and allowing influence to only flow within
that lone DAG. Goyal et al. [17] proposed a new heuristic
called SimPath, establishing that under the LT model, influ-
ence spread can be computed by enumerating simple paths
starting from the seeds. SimPath employs several heuristical
optimizations to prune and cut off path enumerations, main-
taining a balance between running time and seed set quality.
In their experiments, Goyal et al. [17] showed that SimPath
outperforms LDAG in three metrics: spread achieved (qual-
ity), running time, and memory consumption.

TIM and TIM+ [27]. The latest break-through in IM (ap-
proximation) algorithm design started from the notion of
Reverse-Reachable sets (or, RR-sets in short)11 by Borgs et
al. [2]. Utilizing RR-sets, Borgs et al. developed an approx-
imate algorithm with near-optimal time complexity, but it
incurs significant computation overheads in practice.
Building upon Borgs et al.’s work, Tang et al. [27] de-

signed the Two-phase Influence Maximization (TIM) algo-
rithm that improves Borgs et al.’s solution in terms of both
time complexity and practical efficiency. Given any IM in-
stance, the first phase computes a lower-bound on the opti-
mal spread, which is in turn used to determine the number of
RR-sets, θ, that it should sample. The second phase, it sam-
ples θ RR-sets and returns a cardinality-k node-set which
covers the most sampled RR-sets, as the seed set. For both
IC and LT models produces, TIM provides (1 − 1/e − ε)-
approximate solutions with at least 1− |V |−` probability.
TIM+ is an improved version of TIM. It has an interme-

diate step to refine the estimation of the lower bound on

11Consider a deterministic graph G = (V,E) (i.e., edge pres-
ence is binary instead of being probabilistic), and any arbi-
trary node v ∈ V . An RR-set, rooted at v, is the set of all
nodes that can reach v.
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the optimal spread, and hence yields a smaller θ (which
means fewer samples and better efficiency). Both TIM
and TIM+ have expected time complexity O((k + `)(|E| +
|V |) log |V |ε−2) and are orders of magnitude faster than the
greedy algorithm. They achieve even better efficiency than
fast heuristics such as SimPath [17] and IRIE [18].

IMM [26]. IMM is an improvement of TIM+ that of-
fers significantly higher efficiency in practice while retaining
the latter’s asymptotic guarantees (i.e., IMM also returns
(1−1/e−ε)-approximations in O((k+`)(|E|+|V |) log |V |ε−2)
expected time). Its main difference from TIM+ is that it
adopts a more advanced martingale-based approach to de-
rive a tighter lower bound on the optimal spread, which
enables it to achieve the desired approximation guarantee
with a smaller number of RR sets than TIM+. Tang et al.
show that IMM is up to 100 times faster than TIM+ when
they achieve the same asymptotic assurance.

B. A NOTE ON CELF VS. CELF++
Arora et al. [1] in their experiments observed that there

are no significant differences in running times of CELF and
CELF++, contradicting the observations in the original
CELF++ poster paper [16]. To verify their claims, we reim-
plemented both CELF and CELF++ algorithms. In partic-
ular, we observed that there exists non-trivial variance in
the running times of both CELF and CELF++. After care-
ful analysis, we observed that several factors contribute to
this variance: (i) Many nodes tend to have very close spread
or marginal gains (on the two settings we tried). Different
runs of the same algorithm can make different choices while
selecting seeds, making the rest of the seed selection com-
putations very different. (ii) Different initial starting values
for random number generation can lead to different choices,
and thereby different running times. (iii) The running time
varies significantly if multiple experiments are run at the
same time, even on a multi-core server, as in many CPU de-
signs, the L2 and L3 caches may be shared across all cores.
Therefore, in order to obtain accurate running time and

a statistically significant result, it is required that only one
experiment is run at a time, even if the machine has multiple
cores and each experiment is run multiple times to get a
distribution of running times. A statistical significance test
can then be applied to determine if the different in running
time is statistically significant.
In the experiments we report here, to avoid these issues,

we ran exactly one experiment at a time on a machine12. In
addition, to maintain fairness in comparisons, we randomly
selected 10 starting values for random number generation
that were used both in CELF and CELF++ in their 10 re-
spective independent runs13. The results are shown in Figure
6. From 10 runs, under NetHEPT WC settings, the average
running times of CELF and CELF++ are almost identical
- 54.2 min and 55.7 min respectively. The p-value from t-
test is 0.58 confirming that the difference is not statistically
significant. Recall that a lower p-value implies higher signif-
icance in difference. Commonly, a p-value of 0.05 or lower is

12In fact, all experiments reported in this paper are run in
isolation: only one experiment is run on a machine at a time.

13All code, including the algorithm to select starting values
of random number generation is available at our GitHub
repository: https://github.com/jjboo/InfMax. The MIT
license applies.
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Figure 6: Running time CELF and CELF++ on NetHEPT,
10 independent & isolated runs each

considered suitable for establishing the difference to be sta-
tistically significant. In case of NetHEPT IC, with influence
probabilities 0.1 on all edges, average CELF running time is
670.5 minutes while it is 639.5 minutes for CELF++. Here,
CELF++ is faster than CELF by 4.6%, but the p-value is
0.25, making it not statistically significant either.
We hereby acknowledge that results reported in CELF++

poster paper [16] ran into noise and are not statistically sig-
nificant. We would like to thank Arora et al. [1] for bringing
up the issue to our attention.

C. IMPORTANCE OF UNDERSTANDING
SOURCE CODE

Two exact quotes from Arora et al.:

• (a) “In this study, we need to either gather code from
the authors or re-implement them. ” – [1], Section 1

• (b) “Furthermore, to integrate them into the bench-
marking framework and interpret the results, it is crit-
ical to have an in-depth understanding of the code.” –
[1], Section 1

Our Observations. Even though statement (a) is not log-
ically incorrect per se (due to the use of “or”), it is not
clear from [1] which algorithm that Arora et al. had to
“re-implement”. The implementation of EaSyIM [13] may
come from Arora or Galhotra, but for the purpose of
this paper, no re-implementation is needed. From Arora
et al.’s shared repo14, all other algorithms’ implementa-
tions were made available to them by other research groups
[7–9,16–18,24,26,27].
Regarding statement (b), unfortunately it appears that

while Arora et al. highlighted the importance of having an
in-depth understanding of the code, they themselves did not
adhere to it. In particular, as described above, a couple of
their SimPath experiments were stuck in infinite loop for
100 days, and yet, they did not attempt to understand the
code or prepare the dataset properly during that whole time
period.

14Shared by Arora et al: https://drive.google.com/
drive/u/1/folders/0B3hfiezv112RUEVVUlpraGRQNWc. Last
accessed on May 12, 2017. A zipped copy of all files (version
as of May 12, 2017) contained in the linked Google Drive
folder is available upon request should this link become in-
active.
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